Gear Box Fault Diagnosis using Hilbert Transform and Study on Classification of Features by Support Vector Machine
نویسنده
چکیده
The condition of an inaccessible gear in an operating machine can be monitored using the vibration signal of the machine measured at some convenient location and further processed to unravel the significance of these signals. Demodulation is an important issue in gearbox fault detection. Non-stationary modulating signals increase difficulties of demodulation. Though wavelet packet transform has better time–frequency localization, because of the existence of meshing frequencies, their harmonics, and coupling frequencies generated by modulation, fault detection results using wavelet packet transform alone are usually unsatisfactory. This paper proposes a fault detection method that combines Hilbert transform and machine learning method namely support vector machines (SVMs). The statistical feature vectors from Hilbert transform coefficients are classified using J48 algorithm and the predominant features were fed as input for training and testing SVM and their efficiency in classifying the faults in the Bevel Gear Box was studied.
منابع مشابه
Fault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملUsing Wavelet Support Vector Machine for Fault Diagnosis of Gearboxes
Identifying fault categories, especially for compound faults, is a challenging task in mechanical fault diagnosis. For this task, this paper proposes a novel intelligent method based on wavelet packet transform (WPT) and multiple classifier fusion. An unexpected damage on the gearbox may break the whole transmission line down. It is therefore crucial for engineers and researchers to monitor the...
متن کاملHeart Rate Variability Classification using Support Vector Machine and Genetic Algorithm
Background: Electrocardiogram (ECG) is defined as an electrical signal, which represents cardiac activity. Heart rate variability (HRV) as the variation of interval between two consecutive heartbeats represents the balance between the sympathetic and parasympathetic branches of the autonomic nervous system.Objective: In this study, we aimed to evaluate the efficiency of discrete wavelet transfo...
متن کاملA DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks
A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...
متن کاملCommon Spatial Patterns Feature Extraction and Support Vector Machine Classification for Motor Imagery with the SecondBrain
Recently, a large set of electroencephalography (EEG) data is being generated by several high-quality labs worldwide and is free to be used by all researchers in the world. On the other hand, many neuroscience researchers need these data to study different neural disorders for better diagnosis and evaluating the treatment. However, some format adaptation and pre-processing are necessary before ...
متن کامل